58 | Kč |
Excelent 25% Protein Bar 85g gluten freeProteinové tyčinky, Excelent, Protein Star, Protein Bar |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Další informace k produktu Excelent 25% Protein Bar 85g gluten free
Vaše nejoblíbenější proteinová tyčinka EXCELENT PROTEIN BAR přichází s novou ovocnou příchutí limetka s papájou v jogurtové polevě. Delikátní tyčinky EXCELENT PROTEIN BAR obsahují 24% vysoce kvalitních bílkovin.
Delikátní 24% proteinová tyčinka EXCELENT PROTEIN BAR je vždy bohatě posypaná ořechy nebo ovocem a zalitá čokoládovou nebo jogurtovou polevou.
Je vhodná jako: svačina v průběhu dne, která doplní nejen potřebnou energii, ale také kvalitní bílkoviny, které jsou potřebné pro nárůst svalové hmoty.
Je určená pro:
- Částečnou náhradu stravy běžné stravy
- Doplnění bílkovin v průběhu dne
- Sportovce, kteří chtějí přijímat kvalitní zdroj bílkovin v lahodné tyčince
Dodá energii a zasytí.
- 24 % bílkovin
- Kvalitní bílkovinné zdroje
- Přídavek vitaminů
- Bez průmyslově ztužených tuků
Doplněk stravy. Určeno pro zvláštní výživu - vhodné pro sportovce.
SLOŽENÍ
Excelent 25% Protein Bar 85g gluten free
obsahuje:
Excelent Protein bar příchuť vanilková s ananasem: škrobový sirup, poleva mléčná (cukr, rostlinný tuk, syrovátka, kakao, mléko, emulgátor sójový lecitin, aroma), izolát sojových bílkovin, syrovátkový proteinový koncentrát, invertní sirup, sojové vločky, neztužený rostlinný tuk, krém s příchutí vanilky (cukr, rostlinný tuk, mléko, syrovátka, emulgátor sojový lecitin, aroma, barviva E 100 a E 160c), ananas proslazený (ananas, cukr, kyselina citronová, oxid siřičitý), kokos (kokos, oxid siřičitý), kukuřično-bramborový extrudát (kukuřičná krupice, bramborová kaše, cukr, pšeničná vláknina), emulgátor řepkový lecitin, L-Glutamin, zahušťovadlo guarová guma, aroma, L-Leucin, multivitaminový premix (viz. tabulka), L-Isoleucin, L-Valin, antioxidační přísada (E-306, E-304, E-300), konzervant kyselina sorbová.
Excelent Protein bar příchuť čokoládová s oříšky: škrobový sirup, poleva mléčná (cukr, rostlinný tuk, syrovátka, kakao, mléko, emulgátor sójový lecitin, aroma), izolát sojových bílkovin, syrovátkový proteinový koncentrát, invertní sirup, sojové vločky, neztužený rostlinný tuk, krém s lískovými oříšky (cukr, rostlinný tuk, rostlinný olej, syrovátka, kakao, lískooříšková pasta, emulgátor sojový lecitin, aroma), arašídy, kokos (kokos, oxid siřičitý), kukuřično-bramborový extrudát (kukuřičná krupice, bramborová kaše, cukr, pšeničná vláknina), emulgátor řepkový lecitin, kakao, L-Glutamin, aroma, zahušťovadlo guarová guma, L-Leucin, multivitaminový premix (viz. tabulka), L-Isoleucin, L-Valin, antioxidační přísada (E-306, E-304, E-300), konzervant kyselina sorbová.
Excelent Protein bar příchuť ananasová s kokosem: škrobový sirup, poleva jogurtová (cukr, rostlinný tuk, syrovátka, jogurtový prášek, emulgátor sójový lecitin, kyselina citrónová, aroma), izolát sojových bílkovin, syrovátkový proteinový koncentrát, invertní sirup, sojové vločky, neztužený rostlinný tuk, kokos (kokos, oxid siřičitý), krém s příchutí vanilky (cukr, rostlinný tuk, mléko, syrovátka, emulgátor sojový lecitin, aroma, barviva E 100 a E 160c), kukuřično-bramborový extrudát (kukuřičná krupice, bramborová kaše, cukr, pšeničná vláknina), emulgátor řepkový lecitin, L-Glutamin, zahušťovadlo guarová guma, L-Leucin, aroma, multivitaminový premix (viz. tabulka), L-Isoleucin, L-Valin, antioxidační přísada (E-306, E-304, E-300), konzervant kyselina sorbová, barvivo chinolinová žluť (může nepříznivě ovlivňovat činnost a pozornost dětí).
Excelent Protein bar příchuť marcipánová s mandlemi: škrobový sirup, poleva mléčná (cukr, rostlinný tuk, syrovátka, kakao, mléko, emulgátor sójový lecitin, aroma), izolát sojových bílkovin, syrovátkový proteinový koncentrát, invertní sirup, sojové vločky, neztužený rostlinný tuk, krém s příchutí vanilky (cukr, rostlinný tuk, mléko, syrovátka, emulgátor sojový lecitin, aroma, barviva E 100 a E 160c), mandle, kokos (kokos, oxid siřičitý), kukuřično-bramborový extrudát (kukuřičná krupice, bramborová kaše, cukr, pšeničná vláknina), emulgátor řepkový lecitin, L-Glutamin, zahušťovadlo guarová guma, L-Leucin, aroma, multivitaminový premix (viz. tabulka), L-Isoleucin, L-Valin, antioxidační přísada (E-306, E-304, E-300), konzervant kyselina sorbová.
Excelent Protein bar příchuť příchuť černý rybíz s brusinkami: škrobový sirup, poleva jogurtová (cukr, rostlinný tuk, syrovátka, jogurtový prášek, emulgátor sójový lecitin, kyselina citrónová, aroma), izolát sojových bílkovin, syrovátkový proteinový koncentrát, invertní sirup, neztužený rostlinný tuk, sojové vločky, krém s příchutí vanilky (cukr, rostlinný tuk, mléko, syrovátka, emulgátor sojový lecitin, aroma, barviva E 100 a E 160c), brusinky (brusinky, cukr, kyselina citronová, bezinkový koncentrát, slunečnicový olej, rýžová mouka), kokos (kokos, oxid siřičitý), kukuřično-bramborový extrudát (kukuřičná krupice, bramborová kaše, cukr, pšeničná vláknina), emulgátor řepkový lecitin, aroma* (E 122, E 202), L-Glutamin, regulátor kyselosti kyselina citronová, zahušťovadlo guarová guma, L-Leucin, multivitaminový premix (viz. tabulka), L-Isoleucin, L-Valin, antioxidační přísada (E-306, E-304, E-300), konzervant kyselina sorbová.
*Obsahuje E122 - může nepříznivě ovlivňovat činnost a pozornost dětí
Excelent Protein bar příchuť příchuť limetka s papájou: příchuť limetka s papájou: škrobový sirup, poleva jogurtová (cukr, rostlinný tuk, syrovátka, jogurtový prášek, emulgátor sójový lecitin, kyselina citrónová, aroma), izolát sojových bílkovin, syrovátkový proteinový koncentrát, invertní sirup, neztužený rostlinný tuk, sojové vločky, krém s příchutí vanilky (cukr, rostlinný tuk, mléko, syrovátka, emulgátor sojový lecitin, aroma, barviva E 100 a E 160c), proslazená papája (papája, cukr, oxid siřičitý), kokos (kokos, oxid siřičitý), kukuřično-bramborový extrudát (kukuřičná krupice, bramborová kaše, cukr, pšeničná vláknina), emulgátor řepkový lecitin, aroma, L-Glutamin, regulátor kyselosti kyselina citronová, zahušťovadlo guarová guma, L-Leucin, multivitaminový premix (viz. tabulka), L-Isoleucin, L-Valin, antioxidační přísada (E-306, E-304, E-300), konzervant kyselina sorbová.
DÁVKOVÁNÍ
Excelent 25% Protein Bar 85g gluten free
Vezměte dle potřeby
Určeno pro zvláštní výživu. Neobsahuje látky dopingového charakteru. Není určeno pro děti, těhotné a kojící ženy. Ukládejte mimo dosah dětí! Skladujte v suchu při teplotě do 25 °C mimo dosah přímého slunečního záření. Chraňte před mrazem. Výrobce neručí za případné škody vzniklé nevhodným použitím nebo skladováním.
Upozornění pro alergiky: Alergeny jsou vyznačeny tučně ve složení produktu.
Upozornění na alergeny: Tento produkt může obsahovat stopy ořechů, arašídů, sezamu, vajec, lepku, korýšů, oříšků a zbytky skořápkových plodů.
ANANAS-KOKOS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1854 kJ (22%*) | 1575,9 kJ (19%*) | |
Energetická hodnota | 442 kCal (22%*) | 375,7 kCal (19%*) | |
Bílkoviny - proteiny | 24,6 g (49%*) | 20,91 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 42,5 g (16%*) | 36,13 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 31 g (34%*) | 26,35 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 18,9 g (27%*) | 16,07 g (23%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 13,9 g (70%*) | 11,82 g (59%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,8 g | 1,53 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
ARAŠÍDOVÉ MÁSLO | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1845 kJ (22%*) | 1568,25 kJ (19%*) | |
Energetická hodnota | 440 kCal (22%*) | 374 kCal (19%*) | |
Bílkoviny - proteiny | 34,8 g (70%*) | 29,58 g (59%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 42,5 g (16%*) | 36,13 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 30,5 g (34%*) | 25,93 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 18,5 g (26%*) | 15,73 g (22%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 11 g (55%*) | 9,35 g (47%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2,1 g | 1,79 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
BRAZILSKÉ OVOCE CURUBA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1816 kJ (22%*) | 1543,6 kJ (18%*) | |
Energetická hodnota | 433 kCal (22%*) | 368,05 kCal (18%*) | |
Bílkoviny - proteiny | 24,6 g (49%*) | 20,91 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 43,5 g (17%*) | 36,98 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 32,5 g (36%*) | 27,63 g (31%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 17,5 g (25%*) | 14,88 g (21%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 12,5 g (63%*) | 10,63 g (53%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,4 g | 1,19 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
CITRON-TVAROH-MALINA S BRUSINKAMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1784 kJ (21%*) | 1516,4 kJ (18%*) | |
Energetická hodnota | 425 kCal (21%*) | 361,25 kCal (18%*) | |
Bílkoviny - proteiny | 25,2 g (50%*) | 21,42 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 43 g (17%*) | 36,55 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 32,5 g (36%*) | 27,63 g (31%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 16,5 g (24%*) | 14,03 g (20%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 10,5 g (53%*) | 8,93 g (45%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,7 g | 1,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
ČERNÝ RYBÍZ-BRUSINKA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1816 kJ (22%*) | 1543,6 kJ (18%*) | |
Energetická hodnota | 433 kCal (22%*) | 368,05 kCal (18%*) | |
Bílkoviny - proteiny | 24,6 g (49%*) | 20,91 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 43,5 g (17%*) | 36,98 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 32,5 g (36%*) | 27,63 g (31%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 17,5 g (25%*) | 14,88 g (21%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 12,5 g (63%*) | 10,63 g (53%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,4 g | 1,19 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
ČOKOLÁDA-KOKOS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1819 kJ (22%*) | 1546,15 kJ (18%*) | |
Energetická hodnota | 434 kCal (22%*) | 368,9 kCal (18%*) | |
Bílkoviny - proteiny | 24,7 g (49%*) | 21 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 42 g (16%*) | 35,7 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 30,5 g (34%*) | 25,93 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 18 g (26%*) | 15,3 g (22%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 12 g (60%*) | 10,2 g (51%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2,4 g | 2,04 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
ČOKOLÁDA-NUGÁT S BRUSINKAMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1785 kJ (21%*) | 1517,25 kJ (18%*) | |
Energetická hodnota | 425 kCal (21%*) | 361,25 kCal (18%*) | |
Bílkoviny - proteiny | 25,2 g (50%*) | 21,42 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 43 g (17%*) | 36,55 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 32,5 g (36%*) | 27,63 g (31%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 16,5 g (24%*) | 14,03 g (20%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 10,5 g (53%*) | 8,93 g (45%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,9 g | 1,62 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
ČOKOLÁDA-OŘÍŠKY | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1849 kJ (22%*) | 1571,65 kJ (19%*) | |
Energetická hodnota | 441 kCal (22%*) | 374,85 kCal (19%*) | |
Bílkoviny - proteiny | 24,8 g (50%*) | 21,08 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 41,5 g (16%*) | 35,28 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 30,5 g (34%*) | 25,93 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 19 g (27%*) | 16,15 g (23%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 11 g (55%*) | 9,35 g (47%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2,3 g | 1,96 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
LIMETKA-PAPAYA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1816 kJ (22%*) | 1543,6 kJ (18%*) | |
Energetická hodnota | 433 kCal (22%*) | 368,05 kCal (18%*) | |
Bílkoviny - proteiny | 24,6 g (49%*) | 20,91 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 43,5 g (17%*) | 36,98 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 32,5 g (36%*) | 27,63 g (31%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 17,5 g (25%*) | 14,88 g (21%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 12,5 g (63%*) | 10,63 g (53%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,4 g | 1,19 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
MANDLE-PISTÁCIE S PISTÁCIEMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1827 kJ (22%*) | 1552,95 kJ (18%*) | |
Energetická hodnota | 435 kCal (22%*) | 369,75 kCal (18%*) | |
Bílkoviny - proteiny | 25,4 g (51%*) | 21,59 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 42 g (16%*) | 35,7 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 30,5 g (34%*) | 25,93 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 18 g (26%*) | 15,3 g (22%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 10,6 g (53%*) | 9,01 g (45%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,9 g | 1,62 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
MARCIPÁN-MANDLE | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1841 kJ (22%*) | 1564,85 kJ (19%*) | |
Energetická hodnota | 439 kCal (22%*) | 373,15 kCal (19%*) | |
Bílkoviny - proteiny | 25 g (50%*) | 21,25 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 42 g (16%*) | 35,7 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 30,5 g (34%*) | 25,93 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 18,5 g (26%*) | 15,73 g (22%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 11 g (55%*) | 9,35 g (47%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2,2 g | 1,87 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
VANILKA-ANANAS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1822 kJ (22%*) | 1548,7 kJ (18%*) | |
Energetická hodnota | 434 kCal (22%*) | 368,9 kCal (18%*) | |
Bílkoviny - proteiny | 24,8 g (50%*) | 21,08 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 44,5 g (17%*) | 37,83 g (15%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 32,5 g (36%*) | 27,63 g (31%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 17 g (24%*) | 14,45 g (21%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 10,5 g (53%*) | 8,93 g (45%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,8 g | 1,53 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
SLANÝ KARAMEL | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1816 kJ (22%*) | 1543,6 kJ (18%*) | |
Energetická hodnota | 433 kCal (22%*) | 368,05 kCal (18%*) | |
Bílkoviny - proteiny | 23,6 g (47%*) | 20,06 g (40%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 42 g (16%*) | 35,7 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 30,5 g (34%*) | 25,93 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 18,5 g (26%*) | 15,73 g (22%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 11 g (55%*) | 9,35 g (47%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2 g | 1,7 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1 g (17%*) | 0,85 |
MARCIPÁN-MANDLE | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1841 kJ (22%*) | 1564,85 kJ (19%*) | |
Energetická hodnota | 439 kCal (22%*) | 373,15 kCal (19%*) | |
Bílkoviny - proteiny | 25 g (50%*) | 21,25 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 42 g (16%*) | 35,7 g (14%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 30,5 g (34%*) | 25,93 g (29%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 18,5 g (26%*) | 15,73 g (22%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 11 g (55%*) | 9,35 g (47%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 2,2 g | 1,87 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
VANILKA-ANANAS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Energetická hodnota | 1822 kJ (22%*) | 1548,7 kJ (18%*) | |
Energetická hodnota | 434 kCal (22%*) | 368,9 kCal (18%*) | |
Bílkoviny - proteiny | 24,8 g (50%*) | 21,08 g (42%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 44,5 g (17%*) | 37,83 g (15%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 32,5 g (36%*) | 27,63 g (31%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 17 g (24%*) | 14,45 g (21%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 10,5 g (53%*) | 8,93 g (45%*) |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,8 g | 1,53 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 0,5 g (8%*) | 0,43 |
ANANAS-KOKOS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
ARAŠÍDOVÉ MÁSLO | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
BRAZILSKÉ OVOCE CURUBA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
CITRON-TVAROH-MALINA S BRUSINKAMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
ČERNÝ RYBÍZ-BRUSINKA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
ČOKOLÁDA-KOKOS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
ČOKOLÁDA-NUGÁT S BRUSINKAMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
ČOKOLÁDA-OŘÍŠKY | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
LIMETKA-PAPAYA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
MANDLE-PISTÁCIE S PISTÁCIEMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
MARCIPÁN-MANDLE | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
VANILKA-ANANAS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
SLANÝ KARAMEL | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
MARCIPÁN-MANDLE | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
VANILKA-ANANAS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
Vitamín B2 - riboflavin | 1,8 mg (129%*) | 1,53 mg (109%*) |
Vitamíny a minerály Vitamín B2 - riboflavin Riboflavin je důležitý pro dobrý stav kůže, očí, funkce srdce a dalších orgánů. Jelikož má významný vliv na metabolismus cukrů, tuků a aminokyselin, ovlivňuje celkovou energetickou přeměnu v organismu. Vitamin B2 neboli riboflavin patří do skupiny vitaminů rozpustných ve vodě. Je součástí řady enzymových systémů, podílí se téměř na všech oxidoredukčních procesech, které probíhají v buňkách. Používá se v kombinaci s jinými vitaminy skupiny B při nedostatku těchto vitaminů v těle, tj. v období jeho zvýšené spotřeby - růstu, puberty, zvýšené fyzické námaze, při rekonvalescenci, únavě, celkovém vyčerpání, při jednostranné dlouhotrvající nepřiměřené stravě, u pacientů s rychlým úbytkem na tělesné váze. Léčebně se používá také u zánětu jazyka, u kožního onemocnění charakteristického výtokem mazu, u rozsáhlých popálenin, u dlouhotrvajících horečnatých stavů, při zánětech ústních koutků a při rekonvalescenci po zánětlivých chorobách. Nepodáváme při stavech přecitlivělosti na riboflavin. Při použití vyšších dávek tohoto vitaminu může dojít ke svědění a k výskytu kvalitativně změněné citlivosti jedince, popř. ke žlutému zabarvení moče, které je způsobeno vylučováním nevyužitého vitaminu B2. Denní potřeba riboflavinu u člověka je 1,5-1,8 mg, vyšší potřeba je v období těhotenství, kojení a období růstu. Doporučovaná denní dávka při hypovitaminozách je 10-30 mg riboflavinu perorálně. Dětem od tří do 12 let denní dávka pouze do 10 mg. Dětem mladším 3 let by neměla být tato účinná látka aplikována. Dávkování bývá převážně individuální, konzultovat s lékařem! Zvýšené požadavky všech vitaminů jsou v období těhotenství a při kojení. O vhodnosti užívání směsí vitaminů je třeba se poradit s lékařem.Hlavními zdroji riboflavinu je pivovarské a pekařské droždí, mléko, vejce, kakao, tvaroh, vepřové, hovězí a telecí maso, ořechy, brambory, ryby. |
Vitamín B3 - niacin | 8 mg (50%*) | 6,8 mg (43%*) |
Vitamíny a minerály Vitamín B3 - niacin Niacin je nutný pro uvolňování energie z potravy. Kyselina nikotinová může být používána ke snižování hladiny cholesterolu v krvi. Niacin někdy nazývaný nikotinamid, bez něj v podstatě nemůže vůbec pracovat mozek. Napomáhá při likvidaci některých složek cholesterolu a tuků v těle. Denní doporučená dávka je 16 mg. Množství pro dospělé se toleruje maximálně do 35 mg/den. Větší množství potřebují těhotné a kojící ženy, a např. lidé s onemocněním ledvin. Při pití alkoholu a požívání většího množství sladkostí potřeba roste.Pozor na předávkování!!!Příznakem pak může být zarudlá kůže, pocity horka, zvýšení aktivity krve. Lehký nedostatek niacinu se projevuje mnoha nespecifickými symptomy, např.: nespavost, ztráta chuti k jídlu, váhový úbytek, bolestivost jazyka a sliznice ústní dutiny, bolesti břicha, atd. Zdroji niacinu jsou opět pivní droždí, játra, tuňák, sardinky, krocan, semena slunečnice, fazole a hrachu. Funkce: - je součástí důležitých koenzymů v metabolismu sacharidů, mastných kyselin a aminokyselin (NAD a NADP) - udržuje normální tělesný růst a přiměřenou zásobu energie - podporuje syntézu žlucových solí, nutných pro trávení tuku a vstrebávání živin rozpustných v tucích (vitaminy A, D, E a K) - reguluje syntézu hormonu (tyroxin, inzulin, rustový hormon) - působí hlavne v játrech, kuži, strevech a kostní dřeni podporuje metabolismus tuků a přispívá k útlumu tvorby cholesterolu a triglyceridů Příznaky nedostatků: - pelagra (kožní záněty, průjem, postižení sliznic, depresivní psychóza, demence) - vyčerpání - mírné kožní vyrážky - průjem, podráždění - bolest hlavy, příznaky imitující úžeh - ztráta chuti k jídlu, poruchy spánku |
ANANAS-KOKOS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
ARAŠÍDOVÉ MÁSLO | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
BRAZILSKÉ OVOCE CURUBA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
CITRON-TVAROH-MALINA S BRUSINKAMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
ČERNÝ RYBÍZ-BRUSINKA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
ČOKOLÁDA-KOKOS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
ČOKOLÁDA-NUGÁT S BRUSINKAMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
ČOKOLÁDA-OŘÍŠKY | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
LIMETKA-PAPAYA | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
MANDLE-PISTÁCIE S PISTÁCIEMI | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
MARCIPÁN-MANDLE | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
VANILKA-ANANAS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
SLANÝ KARAMEL | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
MARCIPÁN-MANDLE | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
VANILKA-ANANAS | ve 100 g | v 1 tyčince 85 g | |
---|---|---|---|
BCAA | 3800 mg | 3230 mg |
Aminokyselinové spektrum BCAA Tzv. větvené aminokyseliny ( Valin, Leucin, Isoleucin ), které mají silné antikatabolické účinky ( ochrana svalové hmoty ). |
L-Glutamin | 600 mg | 510 mg |
Aminokyselinové spektrum L-Glutamin Nejhojněji se vyskytující aminokyselina, hraje klíčovou roli pro svalovou hmotu, v imunitním systému, důležitý zdroj energie pro ledviny, střeva a játra při dietách. |
Celková hmotnost včetně obalu | 90 g |
Udává celkovou hmotnost výrobku včetně jeho obalu. |
---|---|---|
Sazba DPH | 12 % | |
Adresa výrobce: NUTREND D.S. a.s. Chválkovice 604, 77900 Olomouc , ČR |
||
Uvádí na trh: NUTREND D.S. a.s. Chválkovice 604, 77900 Olomouc , ČR |
ananas-kokos | 56,47 Kč / 100 g |
---|---|
brazilské ovoce curuba | 56,47 Kč / 100 g |
citron-tvaroh-malina s brusinkami | 56,47 Kč / 100 g |
černý rybíz-brusinka | 56,47 Kč / 100 g |
čokoláda-kokos | 56,47 Kč / 100 g |
čokoláda-nugát s brusinkami | 56,47 Kč / 100 g |
čokoláda-oříšky | 56,47 Kč / 100 g |
limetka-papaya | 56,47 Kč / 100 g |
mandle-pistácie s pistáciemi | 56,47 Kč / 100 g |
marcipán-mandle | 56,47 Kč / 100 g |
vanilka-ananas | 56,47 Kč / 100 g |
arašídové máslo | 56,47 Kč / 100 g |
slaný karamel | 56,47 Kč / 100 g |
brazilská káva | 56,47 Kč / 100 g |
475 | Kč |
48 | Kč |
Ke zboží Excelent 25% Protein Bar 85g gluten free nebyla otevřena žádná diskuze,otázka ani odpověď. Buďte první.
Napište dotaz k produktu, hodnocení nebo recenzi.
Změna popisu a složení zboží, fotografií a cen vyhrazena. Etiketa výrobku a jeho balení se může lišit od zobrazené verze v závislosti na aktuálním balení od výrobce