2 310 | Kč |
100% Whey Protein NEW 1000gProteinové nápoje, bílkoviny s obsahem 76-80% proteinů, bílkovin nad 2000g
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ukázat dárky
Dárky a počet kusů si následně vyberete až po vložení produktu do košíku.
Přehled volitelných dárků: v hodnotě 280 Kč koupíte za 229 Kč
v hodnotě 290 Kč koupíte za 199 Kč
v hodnotě 678 Kč koupíte za 559 Kč
v hodnotě 145 Kč koupíte za 109 Kč
v hodnotě 387 Kč koupíte za 299 Kč
v hodnotě 581 Kč koupíte za 459 Kč
v hodnotě 164 Kč koupíte za 119 Kč
v hodnotě 266 Kč koupíte za 229 Kč
v hodnotě 542 Kč koupíte za 439 Kč
v hodnotě 290 Kč koupíte za 229 Kč
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Další informace k produktu 100% Whey Protein NEW 1000g
Přichází zcela nová generace prémiového proteinu s vylepšenou recepturou. Z těch nejkvalitnějších surovin jsme pro vás namíchali koktejl 16 jedinečných příchutí, které vás svou opravdovostí nepřestanou šokovat.
Základ produktu tvoří prémiový ultrafiltrovaný koncentrát mléčné syrovátky (WPC) spolu s nejčistší formou izolátu syrovátkové bílkoviny (WPI). Díky technologii Cross-Flow Microfiltration (CFM) si bílkoviny zachovají všechny biologicky účinné složky pro maximální efektivitu vašeho tréninku.
Patentovaná surovina INSTANT WHEY pak zajišťuje perfektní rozpustnost proteinu pro dokonalý komfort přípravy vašeho proteinového nápoje.
Syrovátková bílkovina pochází z prvotřídního mléka splňující certifikaci GRASS FED. Ekologické chovy krav zabezpečují volnou pastvu skotu na loukách 10 měsíců v roce, jejich strava se skládá minimálně 90 % z čerstvé trávy nebo pícnin.
Vynikající stravitelnost zajišťuje značková směs trávicích enzymů a lahodné příchutě potěší vaše smysly. Prémiový produkt s vysokou biologickou hodnotou je ideální pro obnovu svalové tkáně a svalový růst.
- až 73 % bílkovin
- instantizovaný syrovátkový protein (WPC, WPI)
- použité suroviny splňují certifikaci GRASS FED
- až 24 % WPI
- až 22 g bílkovin v jedné dávce
- 5 g BCAA v jedné dávce
- značková směs trávicích enzymů DigeZyme™
- bez umělých barviv
- bez lepku
SLOŽENÍ
100% Whey Protein NEW 1000g
příchuť ananas+kokos: 78 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 15,5 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy, barvivo beta-karoten.
příchuť banán+jahoda: 78 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 15,5 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, koncentrát z červené řepy, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť bílá čokoláda+kokos:80 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 13,5 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť cookies&cream: 80 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 14,5 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť čokoládové brownies: 65 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 24 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), kakao, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, aroma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť čokoláda+kakao: 65 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 24 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), kakao, aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť čokoláda+kokos: 65 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 24 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), kakao, aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť čokoláda+lískový ořech: 65 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 24 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), kakao, aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť jahoda: 78 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 16 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, koncentrát z červené řepy, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť karamelové latté: 80 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 13,5 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, barvivo karamel, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť kiwi+banán: 80 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 14 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, směs koncentrátu světlice barvířské a extraktu spiruliny, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť ledová káva: 80 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 13,5 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, barvivo karamel, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť mango+vanilka: 77 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 16 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy, barvivo beta-karoten.
příchuť malina: 78 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 15 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, koncentrát z červené řepy, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy.
příchuť pomeranč: 80 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 14 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, aroma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), koncentrát z červené řepy, sladidla sukralóza a steviol-glykosidy, barvivo beta-karoten.
příchuť vanilka: 80 % syrovátkový proteinový koncentrát (obsahuje slunečnicový lecitin a protispékavou látku fosforečnan vápenatý), 13,5 % syrovátkový proteinový izolát (obsahuje slunečnicový lecitin), aroma, bezlepková pšeničná vláknina, stabilizátory akáciová a xanthanová guma, protispékavá látka oxid křemičitý, chlorid sodný, směs trávících enzymů Digezyme® (amyláza, proteáza, laktáza, lipáza a celuláza), sladidla sukralóza a steviol-glykosidy, barvivo beta-karoten.
DÁVKOVÁNÍ
100% Whey Protein NEW 1000g
Dávku 30 g rozmíchejte ve 250 ml vody. V závislosti na denní potřebě bílkovin konzumujte 1 - 3 porce denně, mezi jídly. Maximálně 3 dávky denně. Nepřekračujte doporučené dávkování.
Použití produktu 100% WHEY PROTEIN: 1 odměrka = cca 15 g. Dle doporučeného dávkování odměřte a rozmíchejte v šejkru. Po otevření skladujte při teplotě do 25 ºC a spotřebujte do 3 měsíců.
Upozornění:
Doplněk stravy, se sladidly. Nenahrazuje pestrou stravu. Není určeno pro děti do 12 let. Ukládejte mimo dosah dětí. Chraňte před teplem, mrazem a vlhkostí.
ANANAS KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1581 kJ (19%*) | 474,3 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,4 g (3%*) | 2,52 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,6 g (6%*) | 1,68 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5,8 g (8%*) | 1,74 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
BANÁN JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1581 kJ (19%*) | 474,3 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,4 g (3%*) | 2,52 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,6 g (6%*) | 1,68 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5,8 g (8%*) | 1,74 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
BÍLÁ ČOKOLÁDA KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1583 kJ (19%*) | 474,9 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,5 g (3%*) | 2,55 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,7 g (6%*) | 1,71 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5 g (7%*) | 1,5 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
COOKIES CREAM | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1572 kJ (19%*) | 471,6 kJ (6%*) | |
Energetická hodnota | 372 kCal (19%*) | 111,6 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,9 g (3%*) | 2,37 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,7 g (6%*) | 1,71 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5 g (7%*) | 1,5 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
ČOKOLÁDA BROWNIES | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1556 kJ (19%*) | 466,8 kJ (6%*) | |
Energetická hodnota | 368 kCal (18%*) | 110,4 kCal (6%*) | |
Bílkoviny - proteiny | 72 g (144%*) | 21,6 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,2 g (3%*) | 2,16 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5 g (6%*) | 1,5 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 4,9 g (7%*) | 1,47 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,1 g (16%*) | 0,93 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 3,5 g | 1,05 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,6 g (27%*) | 0,48 |
ČOKOLÁDA KAKAO | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1556 kJ (19%*) | 466,8 kJ (6%*) | |
Energetická hodnota | 368 kCal (18%*) | 110,4 kCal (6%*) | |
Bílkoviny - proteiny | 72 g (144%*) | 21,6 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,2 g (3%*) | 2,16 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5 g (6%*) | 1,5 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 4,9 g (7%*) | 1,47 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,1 g (16%*) | 0,93 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 3,5 g | 1,05 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,6 g (27%*) | 0,48 |
ČOKOLÁDA KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1556 kJ (19%*) | 466,8 kJ (6%*) | |
Energetická hodnota | 368 kCal (18%*) | 110,4 kCal (6%*) | |
Bílkoviny - proteiny | 72 g (144%*) | 21,6 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,6 g (3%*) | 2,28 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5 g (6%*) | 1,5 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 4,8 g (7%*) | 1,44 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3 g (15%*) | 0,9 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 3,2 g | 0,96 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,6 g (27%*) | 0,48 |
ČOKOLÁDA OŘÍŠEK | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1556 kJ (19%*) | 466,8 kJ (6%*) | |
Energetická hodnota | 368 kCal (18%*) | 110,4 kCal (6%*) | |
Bílkoviny - proteiny | 72 g (144%*) | 21,6 g (43%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,6 g (3%*) | 2,28 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5 g (6%*) | 1,5 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 4,8 g (7%*) | 1,44 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3 g (15%*) | 0,9 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 3,2 g | 0,96 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,6 g (27%*) | 0,48 |
JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1572 kJ (19%*) | 471,6 kJ (6%*) | |
Energetická hodnota | 372 kCal (19%*) | 111,6 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,9 g (3%*) | 2,37 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,7 g (6%*) | 1,71 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5 g (7%*) | 1,5 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
KARAMELOVÉ LATTE | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1581 kJ (19%*) | 474,3 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,4 g (3%*) | 2,52 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,6 g (6%*) | 1,68 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5,8 g (8%*) | 1,74 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
KIWI BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1572 kJ (19%*) | 471,6 kJ (6%*) | |
Energetická hodnota | 372 kCal (19%*) | 111,6 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,9 g (3%*) | 2,37 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,7 g (6%*) | 1,71 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5 g (7%*) | 1,5 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
LEDOVÁ KÁVA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1581 kJ (19%*) | 474,3 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,4 g (3%*) | 2,52 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,6 g (6%*) | 1,68 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5,8 g (8%*) | 1,74 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
MALINA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1583 kJ (19%*) | 474,9 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,5 g (3%*) | 2,55 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,7 g (6%*) | 1,71 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5 g (7%*) | 1,5 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
MANGO VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1583 kJ (19%*) | 474,9 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,5 g (3%*) | 2,55 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,7 g (6%*) | 1,71 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5 g (7%*) | 1,5 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
POMERANČ | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1572 kJ (19%*) | 471,6 kJ (6%*) | |
Energetická hodnota | 372 kCal (19%*) | 111,6 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 7,9 g (3%*) | 2,37 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,7 g (6%*) | 1,71 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5 g (7%*) | 1,5 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1581 kJ (19%*) | 474,3 kJ (6%*) | |
Energetická hodnota | 374 kCal (19%*) | 112,2 kCal (6%*) | |
Bílkoviny - proteiny | 73 g (146%*) | 21,9 g (44%*) |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. |
Sacharidy - uhlohydráty | 8,4 g (3%*) | 2,52 g (1%*) |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. |
z toho cukry | 5,6 g (6%*) | 1,68 g (2%*) |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. |
Tuky | 5,8 g (8%*) | 1,74 g (2%*) |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. |
z toho nasycené mastné kyseliny | 3,2 g (16%*) | 0,96 |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH |
Vláknina | 1,5 g | 0,45 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. |
Sůl | 1,8 g (30%*) | 0,54 |
ANANAS KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
BANÁN JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
BÍLÁ ČOKOLÁDA KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
COOKIES CREAM | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
ČOKOLÁDA BROWNIES | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7706 mg | 2311,8 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12736 mg | 3820,8 mg | |
L-Alanin | 3558 mg | 1067,4 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1660 mg | 498 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1642 mg | 492,6 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2245 mg | 673,5 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1313 mg | 393,9 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4382 mg | 1314,6 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1273 mg | 381,9 mg | |
L-Leucin | 7446 mg | 2233,8 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4108 mg | 1232,4 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3391 mg | 1017,3 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4813 mg | 1443,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6576 mg | 1972,8 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1563 mg | 468,9 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1228 mg | 368,4 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2022 mg | 606,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4159 mg | 1247,7 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
ČOKOLÁDA KAKAO | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7706 mg | 2311,8 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12736 mg | 3820,8 mg | |
L-Alanin | 3558 mg | 1067,4 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1660 mg | 498 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1642 mg | 492,6 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2245 mg | 673,5 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1313 mg | 393,9 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4382 mg | 1314,6 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1273 mg | 381,9 mg | |
L-Leucin | 7446 mg | 2233,8 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4108 mg | 1232,4 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3391 mg | 1017,3 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4813 mg | 1443,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6576 mg | 1972,8 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1563 mg | 468,9 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1228 mg | 368,4 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2022 mg | 606,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4159 mg | 1247,7 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
ČOKOLÁDA KOKOS | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7706 mg | 2311,8 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12736 mg | 3820,8 mg | |
L-Alanin | 3558 mg | 1067,4 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1660 mg | 498 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1642 mg | 492,6 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2245 mg | 673,5 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1313 mg | 393,9 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4382 mg | 1314,6 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1273 mg | 381,9 mg | |
L-Leucin | 7446 mg | 2233,8 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4108 mg | 1232,4 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3391 mg | 1017,3 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4813 mg | 1443,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6576 mg | 1972,8 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1563 mg | 468,9 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1228 mg | 368,4 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2022 mg | 606,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4159 mg | 1247,7 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
ČOKOLÁDA OŘÍŠEK | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7706 mg | 2311,8 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12736 mg | 3820,8 mg | |
L-Alanin | 3558 mg | 1067,4 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1660 mg | 498 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1642 mg | 492,6 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2245 mg | 673,5 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1313 mg | 393,9 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4382 mg | 1314,6 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1273 mg | 381,9 mg | |
L-Leucin | 7446 mg | 2233,8 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4108 mg | 1232,4 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3391 mg | 1017,3 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4813 mg | 1443,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6576 mg | 1972,8 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1563 mg | 468,9 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1228 mg | 368,4 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2022 mg | 606,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4159 mg | 1247,7 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
KARAMELOVÉ LATTE | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
KIWI BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
LEDOVÁ KÁVA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
MALINA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
MANGO VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
POMERANČ | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7817 mg | 2345,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. |
Kyselina glutamová | 12907 mg | 3872,1 mg | |
L-Alanin | 3627 mg | 1088,1 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. |
L-Arginin | 1680 mg | 504 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. |
L-Cystein | 1693 mg | 507,9 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. |
L-Fenylalanin | 2284 mg | 685,2 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. |
L-Histidin | 1357 mg | 407,1 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. |
L-Isoleucin | 4459 mg | 1337,7 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. |
Glycin | 1318 mg | 395,4 mg | |
L-Leucin | 7602 mg | 2280,6 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). |
L-Prolin | 4232 mg | 1269,6 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. |
L-Serin | 3466 mg | 1039,8 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. |
L-Threonin | 4930 mg | 1479 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. |
L-Lysin | 6715 mg | 2014,5 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. |
L-Methionin | 1585 mg | 475,5 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. |
L-Tryptofan | 1264 mg | 379,2 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. |
L-Tyrosin | 2069 mg | 620,7 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. |
L-Valin | 4231 mg | 1269,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. |
Celková hmotnost včetně obalu | 1200 g |
Udává celkovou hmotnost výrobku včetně jeho obalu. |
---|---|---|
Sazba DPH | 12 % | |
Adresa výrobce: NUTREND D.S. a.s. Chválkovice 604, 77900 Olomouc , ČR |
||
Uvádí na trh: NUTREND D.S. a.s. Chválkovice 604, 77900 Olomouc , ČR |
ananas kokos | 27,51 Kč / 100 g |
---|---|
banán jahoda | 27,51 Kč / 100 g |
bílá čokoláda kokos | 27,51 Kč / 100 g |
čokoláda kokos | 27,51 Kč / 100 g |
čokoláda kakao | 27,51 Kč / 100 g |
čokoláda brownies | 27,51 Kč / 100 g |
čokoláda oříšek | 27,51 Kč / 100 g |
cookies cream | 27,51 Kč / 100 g |
karamelové latte | 27,51 Kč / 100 g |
kiwi banán | 27,51 Kč / 100 g |
ledová káva | 27,51 Kč / 100 g |
jahoda | 27,51 Kč / 100 g |
malina | 27,51 Kč / 100 g |
mango vanilka | 27,51 Kč / 100 g |
pomeranč | 27,51 Kč / 100 g |
vanilka | 27,51 Kč / 100 g |
1 772 | Kč |
1 079 | Kč |
Ke zboží 100% Whey Protein NEW 1000g nebyla otevřena žádná diskuze,otázka ani odpověď. Buďte první.
Napište dotaz k produktu, hodnocení nebo recenzi.
Změna popisu a složení zboží, fotografií a cen vyhrazena. Etiketa výrobku a jeho balení se může lišit od zobrazené verze v závislosti na aktuálním balení od výrobce